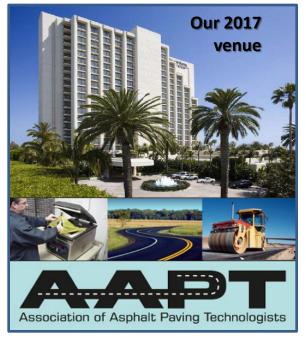
NCHRP 9-55: Recycled Asphalt Shingles in Asphalt Mixtures with Warm Mix Asphalt Technologies


Randy West September, 2016

92nd AAPT Annual Meeting and Technical Sessions

The 2017 Annual Meeting will be held March 19-22, 2017 The Island Hotel, Newport Beach, California USA

AAPT Office: 6776 Lake Drive, Suite 215 Lino Lakes, MN 55014 Phone: 651-293-9188 Fax: 651-293-9193 or Email: aapt@aapt.comcastbiz.net

2017 Call for Papers

The Association of Asphalt Paving Technologists is actively soliciting paper offers for its 2017 Annual Meeting and Technical Sessions. Papers reporting on studies concerning any aspect of asphalt paving technology or related fields are considered. These can include research, design, construction and maintenance issues dealing with all types of asphalt binders, asphalt mixtures, and pavement applications – including innovative ideas and improvements to current practice. Papers will be considered for presentation at the Annual Meeting which is attended by specialists from academia, research organizations, material producers, contractors, national and state authorities, and consultants from around the world. Papers offered for the 2017 Annual Meeting must be submitted through the AAPT website.

Important dates

May 1, 2016 web site open for paper submission August 15, 2016 - deadline for submitting papers November 4, 2016 - notification of paper acceptance December 2016 - registration open March 19 to 22, 2017 - annual meeting and technical sessions

For current information please check our web site at: <u>http://www.asphalttechnology.org</u>

Objectives

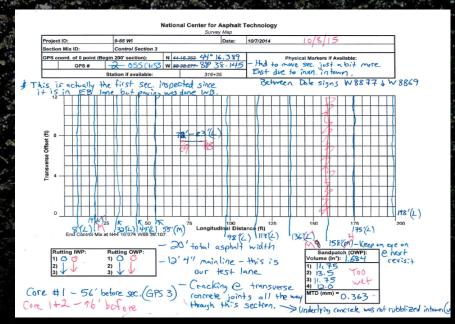
- Develop a mix design and evaluation procedure that provides acceptable performance for asphalt mixtures containing RAS and WMA
 - Determine RAS characteristics that relate to mix performance
 - Evaluate mixing efficiency of RAS with virgin binders over the range of asphalt mixture production temperatures

Existing Field Projects

Location	Date Const.	RAS% RAP%	Mix Variables
US 287	Oct. 2012	5%	HMA
Fort Worth, TX		15%	WMA (chem.)
	3%	HMA sect. 3	
	Jan. 2012	15%	WMA (chem.) sect. 9
		5%, 0%	HMA sect. 4
		3%, 15%	HMA w/ PG 58-28, sect. 6
I-88, IL Tollway Aurora, IL	JunAug. 2012	5% 13%	WMA (chem.), two agg. types

Location	Date Const.	RAS % RAP %	Mix Test Sections	Prod. Temp.
SR 96	SR 96 Sept. 3% PC	3% PC	HMA	324
Larsen, WI	2013	14%	Rediset	317
			Zycotherm	321
US 84	June	5% PC	HMA, low Pa	351
Enterprise AL	2014	15%	HMA, adjusted Pa	350
			WMA (foam), low Pa	312
			WMA (foam), adjusted Pa	304
Union Valley Rd.	Oct.	3% PC	HMA	315
Oak Ridge, TN	2014	10%	WMA (chem.)	267
SR 58	June	5%	HMA w/ PCRAS	305
Wilson, NC	2015	20%	WMA (chem.) w/ PCRAS	277
			HMA w/ MWRAS	297
		WMA (chem.) w/ MWRAS	276	
SR 39	Oct.	2% MW	HMA	318
LaPorte, IN	2015	15%	WMA (foam)	303

New Field Projects


5

Field Performance Eval.

- Randomly selected three 200-ft sections for each mix
 - Rutting Straight edge and wedge
 - Cracking Visual Inspection and LTPP DIM
 - Raveling ASTM E965 (sand patch)

Collect five 6" cores from between wheelpaths

- Determine in-place density
- Binder properties
- Laboratory test

US 287, Fort Worth, Field Performance @ 37 mos.

transverse (reflection) crack, low sev.

21 ft. low sev.

7

HMA

FM 973, Austin, TX Field Performance @ 47 mos.

		Whee	elpath	Non-Wheelpath						
<u>e</u>		Longit	udinal	Longit	Longitudinal		Transverse		Block	
Mix	Severity	# of Cracks	Total Length, ft	# of Cracks	Total Length, ft	# of Cracks	Total Length, ft	# of Locations	Total Area, ft ²	
	Low	6	113	0	0	0	0	0	0	
WMA PG 64-22 15% RAP-3% RAS	Moderate	0	0	0	0	0	0	0	0	
15% KAP-3% KAS	High	0	0	0	0	0	0	0	0	
	Low	0	0	0	0	0	0	3	7200	
HMA PG 64-22 15% RAP-3% RAS	Moderate	0	0	0	0	0	0	0	0	
1370 KAI - 370 KAS	High	0	0	0	0	0	0	0	0	
	Low	18	219	0	0	1	1	0	0	
HMA PG 64-22 0% RAP-5% RAS	Moderate	0	0	0	0	0	0	0	0	
0% KAP-3% KA3	High	0	0	0	0	0	0	0	0	
HMA PG 58-28 15% RAP-3% RAS	Low	23	287	1	7	46	158	0	0	
	Moderate	4	86	0	0	0	0	0	0	
13% NAF-3% NAS	High	0	0	0	0	0	0	0	0	

Illinois Tollway Existing Project

Gravel SMA: - 13% RAP/5% RAS Quartzite SMA: - 12% RAP/5% RAS Evotherm M1 • 2-2.25" thick over concrete

Illinois Tollway Field Performance @ 34 mos.

Mix	Severity	# Cracks	Total length, ft.
Gravel SMA	Low	13	126
	Moderate	6	72
	High	3	36
Quartzite SMA	Low	17	161
	Moderate	3	30
	High	6	72

New Field Projects - Performance

Location	Mix Variables	Age	Field Performance
SR 96	Control, Rediset,	25	Minor reflection cracking over unrubblized PCCP
Larson, WI	Zycotherm	mos.	
US 84,	HMA & WMA – low Pa	17	No cracking or other distresses, last insp. pending
Enterprise, AL	HMA & WMA – adj. Pa	mos.	
Union Valley Rd. Oak Ridge, TN	WMA & HMA	13 mos.	No cracking or other distresses, last insp. pending
SR 58	HMA & WMA w/ PCRAS,	16	No cracking or other distresses
Wilson <i>,</i> NC	HMA & WMA w/ MSRAS	mos.	
SR 39 LaPorte, IN	WMA & HMA		Pending 12 mo. insp. next month

LABORATORY TEST RESULTS

Plant Mix, Lab Compacted No additional aging

Dynamic Modulus

- Temperatures: 4, 20 and 35 to 45°C
 Frequency range: 10 to 0.01 Hz
 Statistically assess mixture stiffness among mixtures
- Testing is completed on all mixtures

ANOVA + Tukey-Kramer test @ 10 Hz

	4 °C/10 Hz		20°C	/10 Hz	40 °C/10 Hz	
Mixture	Average E*, ksi	Statistical Grouping	Average E*, ksi	Statistical Grouping	Average E*, ksi	Statistical Grouping
WI – Control	1881.0	Α	804.2	А	221.7	А
WI – Rediset	1638.7	Α	690.2	Α	212.9	А
WI – Zycoth.	1678.4	Α	719.9	Α	210.4	А
AL – Low Pa WMA	2001.3	Α	968.1	Α	248.9	Α
AL – Low Pa HMA	2114.8	Α	1132.7	В	355.8	В
AL – Adj. Pa WMA	2181.9	A B	1167.6	BC	376.9	В
AL – Adj. Pa HMA	2367.6	В	1265.6	С	408.3	В

Mixtures from a project with the same letter table were statistically grouped together (no statistical difference among mixes at $\alpha = 0.05$).

ANOVA + Tukey-Kramer test @ 10 Hz

	4 °C/10 Hz		20°C/	20°C/10 Hz		C/10 Hz
Mixture	Average E*, ksi	Statistical Grouping	Average E*, ksi	Statistical Grouping	Average E*, ksi	Statistical Grouping
TN – HMA	2361.3	Α	1249.4	Α	330.3	А
TN – WMA	2178.5	Α	974.3	В	208.5	В
NC – MW HMA	2072.7	Α	1013.3	Α	280.8	А
NC – MW WMA	1762.9	В	729.0	В	166.4	В
NC – PC HMA	1941.1	A B	981.8	Α	292.5	А
NC – PC WMA	1789.2	A B	821.1	В	196.5	В
IN-HMA	2444.7	Α	1423.0	Α	494.1	А
IN-WMA	2415.6	Α	1423.9	А	478.5	А

Mixtures from a project with the same letter were statistically grouped together (no statistical difference among mixes at $\alpha = 0.05$).

Hamburg Wheel Tracking Test

• AASHTO T324

- Assess rutting and stripping potential of mixtures
 - 50°C
 - All mixtures tested
 - Maximum 0.5 in (12.5 mm) @ 20,000 passes (NCHRP Report 673)

Hamburg Wheel Tracking Test

Mixture	Average Rut Depth at 20,000 passes, mm	Standard Deviation, mm	Stripping Inflection Point, cycles	Statistical Grouping
WI - Control	1.87	0.08	10,000+	А
WI - Rediset	2.49	0.75	10,000+	А
WI - Zycotherm	2.31	0.32	10,000+	А
AL – Low Pa WMA	4.02	0.30	10,000+	А
AL – Low Pa HMA	1.63	0.17	10,000+	ВC
AL – Adj. Pa WMA	2.08	0.05	10,000+	В
AL – Adj. Pa HMA	1.35	0.22	10,000+	С

Hamburg Wheel Tracking Test

Mixture	Average Rut Depth at 20,000 passes, mm	Standard Deviation, mm	Stripping Inflection Point, cycles	Statistical Grouping
TN – HMA	2.52	0.42	20,000+	Α
TN – WMA	4.98	1.48	18,100	А
NC – MW HMA	1.68	0.22	20,000+	Α
NC – MW WMA	2.90	0.22	20,000+	В
NC – PC HMA	1.62	0.06	20,000+	Α
NC – PC WMA	2.54	0.40	20,000+	В
IN – HMA	2.96	0.81	20,000+	Α
IN - WMA	2.50	0.36	20,000+	А

There was no statistical differences between the types of RAS used.

Flow Number

• AASHTO TP 79-09

- Test on E* specimens
- Temperature: LTPP Bind 3.1 50% Reliability Temp
 20 mm from surface
- Unconfined testing
- All mixtures tested

Current Flow Number Requirements

Traffic Level	NCHRP Report	NCHRP Report
(Million ESALs)	673 (HMA)	691 (WMA)
< 3		
3 to < 10	53	30
10 to < 30	190	105
≥ 30	740	415

Flow Number Results

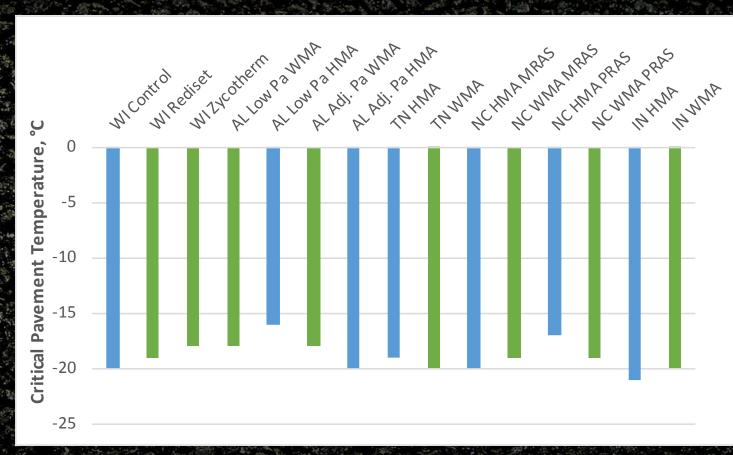
Mix	Temp, °C	Flow Nu	mber, cycles	Recommended	Grouping
		Ave.	St. Dev.	ESAL Range, x10 ⁶ ESALs	
WI – Control		163	51.5		А
WI – Rediset	48.5	120	100.9	10 to < 30	Α
WI – Zycotherm		117	62.2		Α
AL – Low Pa WMA		28	1.5	<3	Α
AL – Low Pa HMA	60.5	123	28.3		В
AL – Adj. Pa WMA		106	14.1	10 to < 30	В
AL – Adj. Pa HMA		119	30.1		В

Flow Number Results

Mix	Temp, °C	Flow Number, cycles		Recommended ESAL Range,	Grouping
		Ave.	St. Dev.	x10 ⁶ ESALs	
TN – HMA	56.5	195	55.7	10 to < 30	Α
TN – WMA	50.5	46	5.7	3 to <10	В
NC – MW HMA		150	49.0	3 to <10	Α
NC – MW WMA	58.0	18	2.4	<3	В
NC – PC HMA	56.0	124	6.6	3 to <10	Α
NC – PC WMA		33	1.3	3 to <10	В
IN-HMA	F1 0	593	90.3	10 to < 30	Α
IN-WMA	51.0	530	40.8	≥ 30	Α

IN mixtures not statistically different, but IN-WMA @ higher traffic level?

National Center for Asphait Technology NCAT at AUBURN UNIVERSITY


IDT Creep Compliance & Strength

• AASHTO T 322

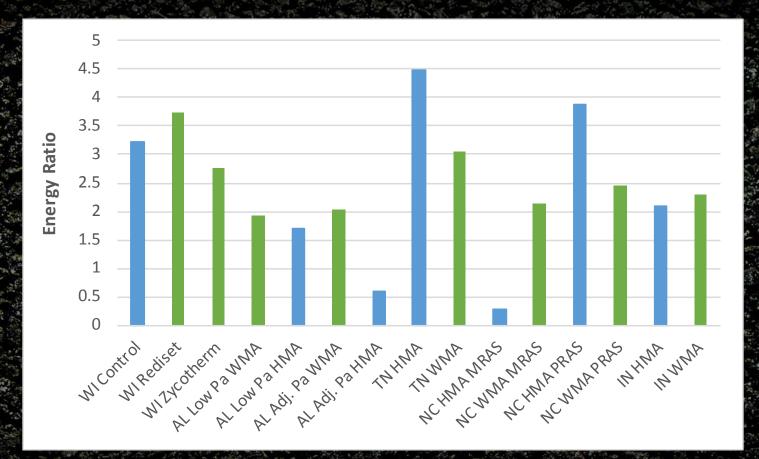
- Creep compliance at three temperatures
- Tensile strength at one temperature
- Predict the temperature at which the mix will
 - crack due to thermal contraction
- All mixtures tested

Critical Pavement Temperatures

Blue = HMA, Green = WMA

No statistical difference between HMA and WMA mixtures

Energy Ratio


• UF Method

- Assess top-down cracking
 - -Three IDT tests conducted @ 10°C
 - Resilient modulus
 - Creep
 - Tensile strength
 - -Criteria developed by UF
- -All mixtures tested

	Recommended Energy Ratio Criteria									
	Traffic: (ESALs/yr)	Minimum Energy								
No. of		Ratio								
100	< 250,000	1								
	< 500,000	1.3								
	< 1,000,000	1.95								

Energy Ratio Results

Blue = HMA, Green = WMA

No statistical difference between HMA and WMA mixtures

Bending Beam Fatigue

• AASHTO T324

- Quantify number of cycles until failure at different strain levels
- Frequency: 10 Hz
- Temperature: 20°C
- Determine fatigue endurance limit for mixtures
- All testing completed

Beam Fatigue

New AASHTO Failure (Peak ModxCy)

Mix	Strain 1	Average Nf	Group	Strain 2	Average Nf	Group	Endurance Limit, με
WI – HMA*	500	287,530	А	250	126,510,069	А	258
WI – Redi*	500	258,840	Α	250	81,180,843	Α	241
WI – Zyco*	500	339,997	А	250	92,643,767	Α	228
AL – Low Pa WMA	600	107,263	Α	300	7,841,577	Α	197
AL – Low Pa HMA	600	53,803	А	300	4,074,857	A B	169
AL – Adj. Pa WMA	600	76,497	Α	300	4,453,407	A B	140
AL – Adj. Pa HMA	600	91,153	Α	300	1,451,193	В	83

*Old AASHTO Failure Cycles (50%)

Beam Fatigue

New AASHTO Failure (Peak ModxCy)

Mix	Strain 1	Average Nf	Group	Strain 2	Average Nf	Group	Endurance Limit, με
TN – HMA	600	66,908	А	300	2,842,008	Α	149
TN – WMA	600	59,745	А	300	1,105,585	В	94
NC – MW HMA	700	45,565	Α	350	1,830,803	Α	165
NC – MW WMA	700	38,264	A B	350	861,843	AB	113
NC – PC HMA	700	17,427	A B	350	954,994	В	139
NC – PC WMA	700	25,221	В	350	820,699	В	118
IN-HMA	600	59,437	А	300	2,245,642	Α	143
IN-WMA	600	89,964	Α	300	2,473,384	Α	112

Overlay Tester

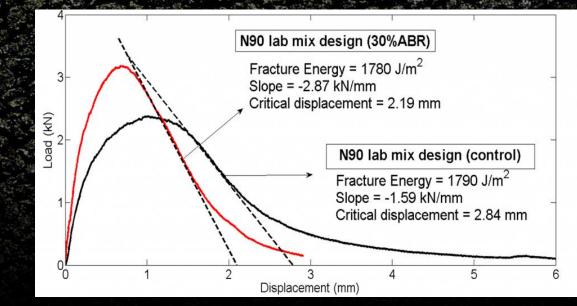
• TxDOT 248-F

- Temperature specified: 25°C
- Should temperature be based on mixture location
- Displacement: 0.025 inches (32% strain)

Texas currently requires mixes ≥ 300 cycles while New Jersey requires ≥ 150 cycles.

OT Results

Mix	Temp,	Displacement,	Cycles un	Statistical	
	°C in		Average	St. Dev.	Group
WI – Control		0.015	792	752.1	Α
WI – Rediset	10		1,320	193.0	А
WI – Zycotherm			1,903	705.6	А
WI – Control	25	0.025	241	83.8	А
WI – Rediset			285	51.1	А
WI – Zycotherm			436	96.4	А
AL – Low Pa WMA			214	69.1	А
AL – Low Pa HMA	L – Low Pa HMA 25		19	0.6	В
AL – Adj. Pa WMA	25	0.025	44	5.6	В
AL – Adj. Pa HMA			24	8.4	В


OT Results

Mix	Temp,		til Failure	Statistical				
	°C	in	Average	St. Dev.	Group			
TN – HMA		0.025	226	55.4	В			
TN – WMA			807	148.2	А			
NC – MW HMA			125	78.6	А			
NC – MW WMA	25		0.025	0.025	0.025	619	88.4	С
NC – PC HMA				215	54.9	A B		
NC – PC WMA			333	142.2	В			
IN-HMA			109	30.3	А			
IN-WMA			158	71.1	А			

Illinois Flexibility Index Test

- Loading = 50 mm/min
- Flexibility Index = A*(Fracture Energy/Slope at inflection) Preliminary ILDOT criterion, minimum 8.0

Asphalt Technology NCAT at AUBURN UNIVERSITY

SCB

• 25 °C

I-FIT Test Results

Mix	Average Flexibility Index (FI)	Std Dev of Flexibility Index (FI)	Statistical Group
WI Control	3.3	0.52	Α
WI Rediset	5.8	1.76	В
WI Zycotherm	2.9	0.47	А
AL Low Pa WMA	2.9	0.65	Α
AL Low Pa HMA	0.7	0.40	BC
AL Adj. Pa WMA	1.0	0.16	В
AL Adj. Pa HMA	0.2	0.05	С
TN HMA	3.3	0.90	Α
TN WMA	4.9	0.73	В
NC HMA MW RAS	1.8	0.56	Α
NC WMA MW RAS	7.3	0.56	В
NC HMA PC RAS	3.7	0.81	С
NC WMA PC RAS	4.7	0.52	С
IN HMA	1.1	0.39	Α
IN WMA	1.7	0.17	В

Correlations

Correlation R- value	Flex Index	Flow Number	E* Low (@ 4 °C)	E* Int (@ 20 °C)	E* High (@ 40 °C)	Critical Pavement Temperat ure (°C)		ER	OT Cycles to Failure
Flex Index	1								
Flow Number	-0.44	1							
E* Low (@ 4 °C)	-0.67	0.62	1						
E* Int (@ 20 °C)	-0.73	0.71	0.97	1					
E* High (@ 40 °C)	-0.79	0.80	0.85	0.94	1				
Critical Pavement									
Temperature (°C)	-0.02	-0.47	-0.35	-0.24	-0.20	1			
HWT Rutting	0.43	-0.09	0.02	-0.10	-0.28	-0.24	1		
ER	0.51	-0.02	-0.24	-0.24	-0.28	0.16	0.22	1	
OT Cycles to									
Failure	0.79	-0.38	-0.41	-0.55	-0.68	-0.16	0.69	0.35	1

Moderate correlation

Strong correlation

Correlations

- Moderate to strong inversely proportional correlation between Flexibility Index and E* values.
- Strong proportional correlation between Flexibility Index and OT cycles to failure.
- Moderate to strong proportional correlation between FN and E* values.

Correlations

 Moderate inversely proportional correlation between OT cycles to failure and E* values. Moderate proportional correlation between OT cycles to failure and HWT rutting. Critical Pavement Temperature (°C) and Energy Ratio values did not correlate with any other test results.

- At low temperatures, WMA has little effect on mix stiffness.
- At intermediate and high temperatures, WMA had lower E* values for 3 of 5 evaluated projects.
- No effect on E* due to type of RAS used.

- No statistical difference in Hamburg rutting was found for WMA vs HMA for WI, TN and IN mixtures. TN mixtures were statistically different for the FN test.
- For the AL mixtures, the low void WMA had statistically higher HWT rutting and lower FN. The adjusted void HMA had the least rutting.
 The two NC WMA mixtures had higher HWT rutting and lower FN than the HMA mixtures.

- No effect on rutting due to type of RAS used.
 All 15 mixtures passed the 0.5 in HWT criterion
- For the FN testing...
 - 2 of 15 had FN < 3 MESAL criteria</p>
 - 4 of 15 mixtures met the 3 to <10 MESALs criteria</p>
 - 8 of 15 mixtures met the 10 to < 30 MESALs criteria</p>
 - 1 of 15 met the > 30 MESALs criteria

 All of the Wisconsin and Tennessee mixtures have ER values greater than 1.95. In total, 11 of 15 mixtures have ER values > 1.95 (highest traffic level). • The AL adj. Pa HMA and the NC MW HMA had low ER results (below 1.0, lowest traffic level), suggesting susceptibility to top-down cracking • HMA vs. WMA was not a sign. factor for ER

- None of the tested mixtures meet the current preliminary I-FIT criterion of 8.0.
- A strong correlation was found between Flexibility Index and OT cycles to failure.
- Based on TxDOT specifications only 4 out of 15 mixtures passed the minimum 300 cycles
 - criterion.

Field Performance

- All sections are performing well which makes it challenging to set some performance criteria.
 - Pass Hamburg = no rutting problems (not sure about the opposite)
 - Many mixes fail existing/preliminary criteria for cracking tests, but field cracking performance is good for first 2-3 years.

Currently working on

- Task 7: Assess response parameters and predict mixture performance
- Task 9: Cost-Benefit Analysis
- Task 10: Best Practices

